String equations in Whitham hierarchies: τ-functions and Virasoro constraints

نویسندگان

  • Luis Mart́ınez Alonso
  • Elena Medina
  • Manuel Mañas
چکیده

A scheme for solving Whitham hierarchies satisfying a special class of string equations is presented. The τ-function of the corresponding solutions is obtained and the differential expressions of the underlying Virasoro constraints are characterized. Illustrative examples of exact solutions of Whitham hierarchies are derived and applications to conformal maps dynamics are indicated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric random matrices and the Pfaff lattice

0. Introduction 1. Borel decomposition and the 2-Toda lattice 2. Two-Toda τ -functions and Pfaffian τ̃ -functions 3. The Pfaffian Toda lattice and skew-orthogonal polynomials 4. The (s = −t)-reduction of the Virasoro vector fields 5. A representation of the Pfaffian τ̃ -function as a symmetric matrix integral 6. String equations and Virasoro constraints 7. Virasoro constraints with boundary terms...

متن کامل

Virasoro constraints for Kontsevich-Hurwitz partition function

In [1, 2] M.Kazarian and S.Lando found a 1-parametric interpolation between Kontsevich and Hurwitz partition functions, which entirely lies within the space of KP τ -functions. In [3] V.Bouchard and M.Marino suggested that this interpolation satisfies some deformed Virasoro constraints. However, they described the constraints in a somewhat sophisticated form of AMM-Eynard equations [4, 5, 6, 7]...

متن کامل

Matrix Models vs. Seiberg–witten/whitham Theories

We discuss the relation between matrix models and the Seiberg–Witten type (SW) theories, recently proposed by Dijkgraaf and Vafa. In particular, we prove that the partition function of the Hermitean one-matrix model in the planar (large N) limit coincides with the prepotential of the corresponding SW theory. This partition function is the logarithm of a Whitham τ-function. The corresponding Whi...

متن کامل

ar X iv : h ep - t h / 02 09 08 5 v 2 7 O ct 2 00 2 Matrix models vs . Seiberg – Witten / Whitham theories

We discuss the relation between matrix models and the Seiberg–Witten type (SW) theories, recently proposed by Dijkgraaf and Vafa. In particular, we prove that the partition function of the Hermitean one-matrix model in the planar (large N) limit coincides with the prepotential of the corresponding SW theory. This partition function is the logarithm of a Whitham τ-function. The corresponding Whi...

متن کامل

Se p 20 06 Genus - zero Whitham hierarchies in conformal - map dynamics ∗

A scheme for solving quasiclassical string equations is developped to prove that genus-zero Whitham hierarchies describe the deformations of planar domains determined by rational conformal maps. This property is applied in normal matrix models to show that deformations of simply-connected supports of eigenvalues under changes of coupling constants are governed by genus-zero Whitham hierarchies.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006